

GENESEED® T7 Biotin Labeled RNA Synthesis Kit

产品简介

本试剂盒利用重组 T7 RNA 聚合酶,以 Biotin-NTP Mix 为底物,在体外快速高效合成含生物素标记的 RNA。合成的生物素标记 RNA 可用于 RNA Pull-down、Northern Blot、原位杂交等实验。使用 1 μg DNA 模板时,每次反应中 RNA 生成量不低于 50 μg。

产品组分

组分	R0402 (3 rxns) *
T7 RNA Polymerase Mix	4.75 μL
T7 Reaction Buffer	4.75 μL
Biotin-NTP Mix **	20 μL
RNase-Free DNase I (1 U/μL)	6.3 μL
10× DNase Reaction Buffer	30 μL
RNase-Free Water	300 μL

^{*:} 使用 20 µL 体系时, 本试剂盒可进行 3 次转录反应。

保存条件

低温运输, -25~-18℃保存, 保质期 12 个月。

自备材料

- 1. RNA 纯化回收: TRIzol LS Reagent、磁珠或过柱纯化试剂盒。
- 2. RNA 检测:微量分光光度计、Qubit 荧光计、琼脂糖凝胶电泳设备或 Agilent 2100 等。
- 3. 其他试剂与耗材: RNase-Free 或 DEPC 处理的 PCR 管和吸头等。

^{**:} Biotin-NTP Mix 内含 ATP, GTP, CTP, UTP 和 Biotin-16-UTP, 其中 UTP 与 Biotin-16-UTP 的比例为 2:1。

操作流程

1. DNA 模板制备

使用含有 T7 启动子序列的线性化质粒、PCR 产物或合成的寡核苷酸为模板,模板应保证高纯度高质量、避免 RNase、蛋白质、RNA 或盐类污染。

以线性化质粒为模板的,应使质粒线性化形成平末端或 5'突出末端,线性化后应进行琼脂糖凝胶电泳检测,确保线性化切割完全,并纯化回收。在 20 μL 反应体系中,线性化质粒模板可使用 0.5~1 μg。

以 PCR 产物为模板的,可在引物上加入 T7 启动子序列进行 PCR 扩增,确保 T7 启动子序列的方向正确。PCR 产物应进行琼脂糖凝胶电泳检测,确保条带单一且大小正确,并纯化回收。在 20 μL 反应体系中,PCR 产物模板可使用 0.2~0.75 μg。

2. RNA 转录合成

- 1) 从试剂盒中取出各组分试剂,冰上融化颠倒混匀,短暂离心后置于冰盒上备用。
- 2) 按照下表依次添加试剂,配制反应体系。

表 1 RNA 转录合成的反应体系

组分	用量
RNase-Free Water	Up to 20 μL
T7 Reaction Buffer	1.5 μL
Biotin-NTP Mix	6.5 μL
DNA 模板	Χ μL (线性化质粒 0.5~1 μg,PCR 产物 0.2~0.75 μg)
T7 RNA Polymerase Mix	1.5 μL

³⁾ 颠倒混匀并短暂离心,置于 PCR 仪上 37℃孵育 2 h。合成小于 300 nt 的短链 RNA 时应 37℃孵育 4~16 h。

3. DNA 模板去除

向反应液中依次添加 68 μL RNase-Free Water, 10 μL 10× DNase Reaction Buffer, 和 2 μL RNase-Free DNase I (1 U/μL),置于 PCR 仪上 37°C孵育 15 min。

4. 纯化回收

使用 TRIzol LS Reagent、磁珠或 RNA 柱纯化试剂盒、纯化回收生物素标记的 RNA。

5. RNA 检测

1) 定量检测

使用微量分光光度计(如 Nanodrop)或 Qubit 荧光计检测 RNA 的浓度和纯度。

2) 电泳检测

使用琼脂糖凝胶电泳或 Agilent 2100 检测 RNA 的大小和完整性,生物素标记的 RNA 分子量增大,条带大小可能比预期偏大。使用非变性琼脂糖凝胶电泳时,可以先将 RNA 置于 65℃ 孵育 10 min,再上样检测。